Record setting during dispersive transport in porous media

نویسندگان

  • Yaniv Edery
  • Alex Kostinski
  • Brian Berkowitz
چکیده

[1] How often does a contaminant ‘particle’ migrating in a porous medium set a distance record, i.e., advance farther from the origin than at all previous time steps? This question is of fundamental importance in characterizing the nature of the leading edge of a contaminant plume as it is transported through an aquifer. It was proven theoretically by Majumdar and Ziff (2008) that, in the 1d case for pure diffusion, record setting of a random walker scales with n, where n is the number of steps, regardless of the length and time distribution of steps. Here, we use numerical simulations, benchmarked against the 1d analytical solution, to extend this result also for pure diffusion in 2d and 3d domains. We then consider transport in the presence of a drift (i.e., advective‐dispersive transport), and show that the record‐setting pace of random walkers changes abruptly from/ n to/ n. We explore the dependence of the prefactor on the distribution of step length and number of spatial dimensions. The key implication is that when, after a brief transitional period, the scaling regime commences, the maximum distance reached by the leading edge of a migrating contaminant plume scales linearly with n, regardless of the drift magnitude. Citation: Edery, Y., A. Kostinski, and B. Berkowitz (2011), Record setting during dispersive transport in porous media, Geophys. Res. Lett., 38, L16403, doi:10.1029/2011GL048558.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pore scale simulation of solute transport in fractured porous media

[1] We investigate the effects of the porosity (and thus permeability) of porous matrix and the fracture aperture on transport in fractured porous media. We do so with detailed lattice Boltzmann simulations on constructed porous media with a single fracture. Both plume spatial moments (the average plume velocity and the dispersion coefficients) and mass transfer coefficients between the facture...

متن کامل

Upscaling Mass Transport with Homogeneous and Heterogeneous Reaction in Porous Media

The upscaling process of mass transport with chemical reaction in porous media is carried out using the method of volume averaging under diffusive and dispersive conditions. We study cases in which the (first-order) reaction takes place in the fluid phase that saturates the porous medium or when the reaction occurs at the solid-fluid interface. The upscaling effort leads to average transport eq...

متن کامل

Transport Property Estimation of Non-Uniform Porous Media

In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...

متن کامل

The effect of solute size on diffusive-dispersive transport in porous media

The purpose of this work was to investigate the effect of solute size on diffusive-dispersive transport in porous media. Miscible displacement experiments were performed with tracers of various sizes (i.e. tritiated water (3H20), pentafluorobenzoate (PFBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and a homogeneous, nonreactive sand for pore-water velocities varying by three orders of magnit...

متن کامل

Scale up of Flow in Porous Media 1

We study the scale up problem for ow in porous media. The general nature of this problem is outlined, leading to a discussion of assumptions on random elds appropriate for the description of geological heterogeneities. The main point of this paper is to use direct numerical simulation to evaluate the ensemble averages describing uid dispersion, for ow in porous media. The relation between ensem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011